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1 Measuring divergence with the Aitchison distance metric1

In our study, we use the Aitchison distance1 to measure divergence (i.e. the beta-diversity between commu-2

nities within the same condition) because of its sensitivity to non-overlapping species between communities3

and its statistical properties with respect to handling compositional data. To illustrate why we chose the4

Aitchison distance, we will define it alongside other commonly used beta-diversity metrics - Bray-Curtis2 and5

Jensen-Shannon Distance (JSD)3 - and consider the effects of each across different hypothetical scenarios.6

1.1 Metric definitions7

Aitchison(x,y) = E(clr(x), clr(y)) =
√∑

(clr(x)− clr(y))
2

(1)

Where E is the Euclidean distance, clr is the center log ratio transformation clr(x) = log x/G(x), and8

G(x) is the geometric mean. A pseudocount of 1 is added to each vector (x + 1) to allow for a meaningful9

calculation of log transformations and G(x). See Section 1.3 for more information about the effect of10

pseduocounts.11

Bray-Curtis(x,y) =

∑
|x− y|∑
|x+ y|

(2)

JSD(x,y) =

√
D(x||m) +D(y||m)

2
(3)

Where D is the Kullback-Liebler divergence: For distributions a(i) and b(i), D(a(i)||b(i)) =
∑

a(i) log a(i)
b(i) .12

And where m = (x+ y)/2.13

1.2 Simple hypothetical scenarios14

To compare these three metrics, we can interpret their results for the following four scenarios. For simplicity’s15

sake we can assume pairs of communities where all taxa that are found in each community are sequenced to16

equal amounts:17

Scenario 1: Entirely non-overlapping communities18

C1 : 100. 0. 0. 0. 0. 0. 0. 0. 0. 0.
C2 : 0. 100. 0. 0. 0. 0. 0. 0. 0. 0.

Scenario 2: Partially overlapping low-diversity communities19

C1 : 100. 0. 0. 0. 0. 0. 0. 0. 0. 0.
C2 : 100. 100. 0. 0. 0. 0. 0. 0. 0. 0.

Scenario 3: Entirely non-overlapping diverse communities20

C3 : 100. 100. 100. 100. 100. 0. 0. 0. 0. 0.
C4 : 0. 0. 0. 0. 0. 100. 100. 100. 100. 100.

Scenario 4: Partially overlapping diverse communities21

C3 : 100. 100. 100. 100. 100. 0. 0. 0. 0. 0.
C4 : 100. 0. 0. 0. 0. 100. 100. 100. 100. 100.
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Aitchison Bray-Curtis JSD
Scenario 1: Non-overlapping, low diversity 6.526766 1.000000 0.832555

Scenario 2: Partially overlapping, low diversity 3.263383 0.333333 0.464501
Scenario 3: Non-overlapping, high diversity 14.594293 1.000000 0.832555

Scenario 4: Partially overlapping, high diversity 13.768228 0.818182 0.752880

Table 1: Supplementary Table 1 — Divergence between hypothetical communities using dif-
ferent beta-diversity metrics. The distances computed in scenarios 1 (non-overlapping taxa) and 2
(partially overlapping taxa) are with low diversity communities (C1, C2, and C3) while distances computed
in scenarios 3 (non-overlapping) and 4 (partially overlapping) are with high diversity communities (C4, C5,
and C6).

These scenarios reveal how each metric is sensitive to overlapping taxa and diversity, but how only the22

Aitchison distance detects differences in the special case where no taxa overlap between communities. The23

sensitivity to overlapping taxa is clear when comparing scenarios 1 and 2 or when comparing scenarios 3 and24

4 - in both cases, all metrics decrease in value when a taxon becomes shared between communities (Scenario 125

> Scenario 2 and Scenario 3 > Scenario 4). The sensitivity to diversity is apparent by comparing scenarios 226

and 4, where all metrics increase in value when more unshared taxa are present in each community (Scenario27

4 > Scenario 2). Comparing scenarios 1 and 3 reveals the special case where the diversity of both communities28

increases without any overlapping taxa. Here, the value of Bray-Curtis and JSD is unchanged, while Aitchison29

interprets this increase in differences between communities as an increase in distance (Scenario 3 > Scenario30

1 for Aitchison and Scenario 1 = Scenario 3 for Bray-Curtis and JSD).31

The Aitchison distance may be best for the scenario in our study, where we are comparing communities32

cultured under the same conditions (i.e. divergence). We are precisely interested in the situation in which33

communities that may start off similar to each other undergo different assembly processes (including the34

selection of entirely non-overlapping taxa) despite growing on the same conditions. With the Aitchison, we35

can interpret non-overlapping communities of few species as more similar than non-overlapping communities36

of many species, whereas the other distance metrics make no distinction (Scenario 1 versus Scenario 3).37

We further discuss the relationship between diversity and the Aitchison distance in the following section,38

“Divergence is sensitive to richness and evenness” (Section 2).39

An additional and critical justification for using the Aitchison distance relates to how it fundamentally40

handles “compositionality”, which other dissimilarity metrics (e.g. Bray-Curtis and JSD) cannot address.41

As described in “Microbiome Datasets Are Compositional: And This Is Not Optional” by Gloor et al.4,42

since sequencing data is constrained by the number of “slots” in the sequencer, sequencing reads are non-43

independent random samples from a population and all that is effectively being captured during sequencing is44

the proportion (or composition) of these reads from the larger population. As a consequence, it is critical to45

treat sequencing data with compositional techniques, such as the Aitchison distance, which is the Euclidean46

distance between two compositions following centered log-ratio (clr) transformation (Equation 1).47

As outlined in Gloor et al., ratio transformations between proportions capture the same relationship48

between counts of the same data and log transformations of these ratios result in symmetrically distributed49

and linearly related data4. While information about the true absolute abundance of taxa is lost during50

sequencing, ratio transforms provide a framework to compare all taxa to the same reference within a sample.51

The centered log-ratio in particular is scale-invariant, meaning that, in principle, this ratio will be the52

same regardless of the sample read depth. These properties allow for the proper use of standard statistical53

methods on clr-transformed data, ultimately making the Aitchison distance a more appropriate method for54

compositional data than other common alternatives.55

1.3 Effect of pseudocount56

As mentioned in Equation 1, a pseudocount is required to compute the Aitchison distance when non-57

overlapping taxa (0 counts) are present to allow for log-based calculations4. We added a pseudocount58

of 1 to all taxa in each sample, so that 0-count entries for a given sample, x became log[1/G(x)] following59

the clr-transformation. Since in real sequencing samples, G(x) and most read counts >> 1, this transformed60

pseudocount value is much smaller than most of the real clr-transformed counts that it is being compared61
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to, and therefore does not introduce any systematic noise into our calculations. When computing divergence62

on our communities, we used the union of all taxa detected in our study for each calculation. As a result,63

some calculations included instances of computing differences between entries that were each 0-count before64

clr-transformation (0-0 pairs). Leaving 0-0 pairs in principle could alter results compared to removing them;65

however, we repeated all of our calculations in the manuscript with the alternative approach of removing 0-066

pairs, and we found that all results were nearly identical.67

2 Divergence is sensitive to richness and evenness68

As shown in Figure 3, we observed that communities with higher diversity diverge more from each other.69

We were interested in understanding whether this correlation should be expected merely based on (uniform)70

random chance or if this results from how species are distributed in natural communities. Here we demon-71

strate that the answer is both: our divergence metric (the Aitchison distance) does correlate with richness72

(i.e. the number of taxa) and, in addition, skewness (unevenly distributed taxa) causes communities of the73

same richness to diverge further. This notion supports the logic we depict in Figure 4d where the endemic74

(uneven) distribution of specialists contributes to the increased divergence experienced by communities in75

more complex conditions.76

In order to test the relationships between richness, evenness, and divergence, we simulated the divergence77

between communities sampled from multinomial distributions5. With a multinomial distribution, we can78

generate simplified simulated “communities” with n total counts (akin to sequencing depth) over k taxa79

where each taxon i has probability pi. When we tested the effect of richness on divergence, by sampling80

communities with increasing k under the null assumption that all taxa are equally likely (pi = 1/k), we81

found that communities diverge more with increasing richness (Supplementary Figure S1a). However,82

we know that real communities have a substantially skewed distribution that deviates from the uniform one83

used under this null assumption6. To best capture the distribution of taxa in nature, we used the distribution84

of abundances from one of our source experimental communities with 300 observed taxa (Supplementary85

Figure S1b). Since our post-inoculation communities (from day 3 and onwards) have a richness an order86

of magnitude less than our source communities, the following analysis provides a conservative assessment of87

the effects of richness on divergence for our post-inoculation communities.88

To understand how divergence is affected by the distribution of taxa, we generated fifty communities89

each from a multinomial distribution parameterized by the real taxonomic abundance distribution of our90

representative experimental community (Supplementary Figure S1b) and then calculated the divergence91

between all pairs of these generated communities. We repeated these two steps to generate another fifty92

communities from a uniform distribution with the same richness as our representative community, and93

compared the skewed and uniform divergence outcomes (Supplementary Figure S1c). We find that even94

though these calculations were performed on communities of the same size, the divergence of the skewed95

communities is significantly greater than those of the uniformly distributed ones, showing that skewness96

contributes to the signal we see in our experiment (Figure 3-4). For all of the previous analyses, we fixed97

n = 8, 564, the “sequencing depth” of our representative experimental community.98

Even upon taking into account the natural distribution of taxa, the divergence observed for randomly99

sampled communities falls short of the divergence experimentally measured across communities in our ex-100

periment and simulations. In our experiments, divergence reaches values of ∼20-30 for our post-inoculation101

communities (Figure 2), which is far greater than the mean of the distribution of the skewed distribution102

cases (∼8). Again, our experimental post-inoculation communities diverge this much even though they are103

an order of magnitude smaller than our source communities, suggesting that skewness provides a substantial104

contribution to divergence in these experimental communities compared to richness. These analyses reveal105

how both increased richness (which has shown to be correlated with metabolic complexity7) and the un-106

even distribution of taxa (as we show) contribute to divergence and how further differences between natural107

communities shape their divergence in our experiments.108
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Figure 1: Supplementary Figure S1 — Divergence is sensitive to richness and evenness. a) The
divergence (measured by the Aitchison distance) between two randomly sampled communities of uniformly
likely taxa of increasing size (richness). Communities with higher richness diverge more than communities
with less. b) The (uneven) distribution of taxa abundances from a real community in our study. c) The
distribution of divergence between fifty simulated communities with (i) 30 uniformly distributed taxa, (ii) 300
uniformly distributed taxa, and (iii) 300 unevenly distributed taxa (following the distribution in b). Each
violin describes the distribution of pairwise distances between all fifty simulated communities (N=1,255 per
violin). Each violin outlines the kernel density estimate and contains a box which is bound by the interquartile
range with an open circle at the media and whiskers that extend up to 1.5 times the interquartile range.
The increase in divergence between (i) and (ii) shows how divergence is sensitive to richness and the increase
in divergence between (ii) and (iii) shows how divergence is then further sensitive to skewness. Note that
divergence between our real communities ranges from 20-30, which is far greater than in these simulated
communities (Figure 2).

3 Generality of cross-feeding mechanism in our consumer-resource109

model110

3.1 Consumer-resource model definition111

The microbial consumer-resource model (CRM) is a valuable method8–12 for simulating the dynamics of112

complex microbial communities. In this model, consumers uptake resources for growth and in the process113

leak some of the resulting transformed byproducts into the environment. In the text below we use the terms114

“leakage” to encompass different ways that microbially-transformed metabolites are made available to the115
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environment, including exudation, active and passive secretion, and extracellular degradation. Note also that116

the standard CRMs do not differentiate between costly (ATP-dependent) transport and free diffusion. Cross-117

feeding, where the byproducts of one population’s activity become available to others for consumption13,118

emerges from these dynamics. As described in our Methods, our CRM is directly adapted from previous119

work8 and is defined with the following system of equations,120

dNi

dt
= Ni

(∑
α

(1− l)ci,αRα −m

)
(4)

dRα

dt
=
(
R0

α −Rα

)
−
∑
j

Njcj,αRα +
∑
j,β

Njcj,βRβDα,βl (5)

Where Ni is the abundance of species i, R is the concentration of resource α, R0
α is the resource supply121

concentration, l is the leakage fraction i.e. how much each resource is “leaked” (how much of α is converted122

into β, where the rest is converted into biomass), m is the consumer maintenance cost, ci, α,is the consumer123

preference matrix, and Dα, β, is the resource transformation matrix describing the rate that β turns into α124

following consumption. In our simulations, we parameterize the c and D matrices to represent the trophic125

structure of microbial communities, where groups of taxa consume types of resources (defined by a struc-126

tured c matrix) and complex resources hierarchically transform into simpler resources following consumption127

(defined by a structured D matrix).128

3.2 Representations of cross-feeding in CRMs129

As mentioned in the Results and Discussion sections, an important limitation of this model is the simplified130

formulation of cross-feeding defined by a linear coupling of resource transformation, leakage, and growth.This131

is meant to capture in an idealized way the complexity of metabolism. While this model has been successful132

in reproducing various ecological phenomena9,10, it does so at the expense of a detailed and accurate de-133

scription of the many possible ways microbes may interact. The simplified view portrayed by a typical CRM134

encodes (through the D matrix) a series of possible transformations, implicitly assumed to be unimolecular135

intracellular reactions that convert a given metabolite into different ones, with a rate directly proportional136

to the uptake rate of the substrate9,11. We argue here that, despite the simplicity of the original interpre-137

tation, the CRM can be viewed as capturing, in an approximated way, a much broader set of alternative138

cross-feeding mechanisms. While these mechanisms can be very complex and dependent on environmental139

variables that are absent from the model definition, they may be expected to display on average a behavior140

that is consistent with the CRM formalism.141

Cross-feeding can be mediated by a large assortment of molecules that can be produced, secreted, ex-142

changed, imported, or extracellularly modified through a variety of mechanisms13. We focus below on three143

specific processes that are known to mediate metabolic cross-feeding: extracellular degradation, fermenta-144

tion, and stress-induced cross-feeding. While the biochemical mechanisms underlying these processes are145

not explicitly described with the CRM formalism, their overall phenomenological outcome (i.e. consumption146

of an incoming metabolite and production of an outgoing resource) is reasonably captured by the standard147

metabolite transformation term (Njcj,βRβDα,βl) of the CRM, where the net outcome can be approximately148

described with an outgoing byproduct production that is proportional to biomass and substrate amount.149

Therefore for the purpose of interpreting our data, we posit that the microbial consumer resource model150

with trophic structure can sufficiently approximate cross-feeding dynamics as measured in real complex151

communities.152

Below, we examine how the metabolite transformation term, Njcj,βRβDα,βl, relates to the availability of153

the leaked metabolites (dRα/dt) in fermentation, extracellular degradation, and stress-induced cross-feeding154

and then summarize these details in Supplementary Table 2.155

3.2.1 Fermentation156

With fermentation, sugars imported by the cell for ATP production are not fully metabolized to CO2 (as157

is the case with respiration), but rather result in the production and secretion of (“simpler”) organic acid158

byproducts (Dα,β) which can then be secreted and made available to other community members. Different159
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organisms are capable of fermenting different sugars (cj,β)
14 resulting in a diversity of byproducts. The160

net amount of byproducts secreted during fermentation (l, Rα)
15,16 and the amount of microbial biomass161

(Ni)
17 generally correlate with the amount of sugar present in the environment (Rβ). Therefore we expect162

that secretions due to fermentation and the subsequent cross-feeding that emerges are phenomenologically163

captured as a potential avenue for metabolic interdependence in our model.164

We should note that the extent of fermentation vs. respiration often depends on the availability of oxygen,165

a metabolic detail that is missing in CRMs. For the purpose of the present work, it is reasonable to assume166

that oxygen is somehow limiting both in our experimental setup and in the natural soil from which the167

microbial samples are extracted, and that a certain degree of fermentation is pervasive in the communities18.168

We don’t expect the details of which microbes secrete what specific byproduct under a certain level of oxygen169

to be relevant for the conclusions of our work, but this is still a fundamental limitation of CRM that may170

be addressed in future models.171

3.2.2 Extracellular degradation172

Bacteria produce a diverse set of extracellular enzymes19,20 to degrade polymers (e.g. cellulose) that are173

too large to be directly imported. The extracellular activity of these enzymes, which are often attached174

to, or found in the vicinity of the producing cell, lead to the environmental release (l) of simpler products175

(e.g. monosaccharides), which constitute common goods, available for import and utilization by surrounding176

microbes (cj,β)
13. Significant portions of the liberated byproducts can be utilized by individual taxa that177

do not participate in the production of relevant extracellular enzymes (including “cheaters”, which consume178

byproducts without contributing to enzyme production). The effective massive loss of substrate (i.e. the179

fact that cellulose is not directly used by the enzyme producer) can be encoded in a large l parameter of180

our model. One can view this process as an overall transformation of a given compound (e.g., cellulose) by181

a given organism into a simpler product (e.g. glucose) usable by other organisms, hence giving rise to a182

particular case of cross-feeding.183

In our model, for this specific subset of metabolic processes, cj,beta can be interpreted as representing184

the extent to which organism j can produce extracellular enzymes that degrade molecule β, Dα,β represents185

the extent to which complex polymers β is transformed into simpler molecule α, l represents the fraction of186

degraded byproducts that are available to other community members, m represents the cost of producing187

extracellular enzymes, growth is proportional to the amount of consumed resource, and cross-feeding is188

proportional to the size of the degrader population and the leakage fraction.189

Note that in our implementation of the CRM we do not explicitly distinguish between intracellular and190

extracellular catabolism, but rather encodes an overall hierarchy of molecular structures. What matters for191

the purpose of our analysis is that the diversity of cross-feeding processes (intracellular and extracellular)192

likely occurring in our experimental communities can be captured simultaneously in an approximated way193

by our CRM.194

3.2.3 Stress-induced195

While cross-feeding is typically thought of as a process associated with metabolism during active (typically196

exponential) growth (ex. organic acid secretion in fermentation and the availability of extracellular degra-197

dation byproducts), it can also emerge as a means for non-growing cells to modify the environment. One198

example is acid stress-induced cross-feeding, where a growth-arrested population experiencing acid stress199

consumes the acid in its environment and then secretes many of the resulting central carbon metabolic inter-200

mediates without growing21. In particular, one study found that one organism facing acid stress converted201

acetate into other simple metabolites such as pyruvate, lactate, and glutamate as secreted byproducts21. In202

this way, the stressed population detoxifies its environment and a significant amount of cross-feeding emerges203

without the consumer harnessing energy or performing biosynthesis.204

Despite the complex and subtle mechanisms involved in this stress-induced cross-feeding phenomenon,205

it is possible to think of our model as encoding in an approximate way the overall net transformation of206

environmental metabolites. Our model represents the consumption of specific acids with cj,β , the transfor-207

mation into byproducts with Dα,β with leakage l (which can approach 100% of the incoming substrate if cells208

are not growing at all) that is proportional to population size Ni even if these populations are not actively209

growing. We have constructed our Dα,β matrix such that most of a resource is transformed into a simpler210
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molecule, but a significant transformation among molecules of comparable complexity (e.g. acetate to lac-211

tate, as seen in the above example) is also allowed (see off-diagonal components of D matrix in Extended212

Data Fig. 7a). While the detoxifying population does not grow while secreting byproducts, over time213

larger populations will secrete more byproducts than smaller ones, so we would expect that our model still214

captures the proportional relationship between resource transformation, leakage, and population size (Ni)215

under stress-induced cross-feeding conditions. An important difference between stress-induced cross-feeding216

and the other mechanisms we describe is that in the stress-induced case, secretions may specifically occur217

only once the cells stop growing - a feature that is not currently captured by the CRM.218

As with the other categories of cross-feeding mechanisms outlined above, our CRM does not explicitly219

distinguish between specific mechanisms, but rather serves as a generalized model that broadly captures each220

of these possibilities.221

Variable Fermentation Extracellular Stress-induced
c Sugar preference Polymer preference Acid preference
D Feasible transforma-

tions into organic acids
Possible degradation
byproducts

Producible metabolic
intermediates

l Degree of fermentation
byproduct leakage

Amount of extracellu-
lar degradation prod-
ucts made available

Amount of byproduct
secretion

Table 2: Supplementary Table 2 — Representations of cross-feeding mechanisms in the micro-
bial consumer resource model.
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