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Metabolic complexity drives divergence in 
microbial communities

Michael R. Silverstein    1,2, Jennifer M. Bhatnagar    1,3 & Daniel Segrè    1,2,3,4 

Microbial communities are shaped by environmental metabolites, but 
the principles that govern whether different communities will converge 
or diverge in any given condition remain unknown, posing fundamental 
questions about the feasibility of microbiome engineering. Here we 
studied the longitudinal assembly dynamics of a set of natural microbial 
communities grown in laboratory conditions of increasing metabolic 
complexity. We found that different microbial communities tend to become 
similar to each other when grown in metabolically simple conditions, but 
they diverge in composition as the metabolic complexity of the environment 
increases, a phenomenon we refer to as the divergence-complexity 
effect. A comparative analysis of these communities revealed that this 
divergence is driven by community diversity and by the assortment of 
specialist taxa capable of degrading complex metabolites. An ecological 
model of community dynamics indicates that the hierarchical structure of 
metabolism itself, where complex molecules are enzymatically degraded 
into progressively simpler ones that then participate in cross-feeding 
between community members, is necessary and sufficient to recapitulate 
our experimental observations. In addition to helping understand the role of 
the environment in community assembly, the divergence-complexity effect 
can provide insight into which environments support multiple community 
states, enabling the search for desired ecosystem functions towards 
microbiome engineering applications.

Understanding how diverse microbial communities assemble is 
important for addressing open challenges in microbial ecology with 
applications that range from medicine1,2 to climate change mitiga-
tion3–5. Studies in natural6,7 and laboratory8–15 settings have investi-
gated the reproducibility of assembly dynamics across a range of 
environmental conditions leading to seemingly contradictory results. 
Under certain conditions, microbial community assembly appears to 
be highly deterministic, as different communities are driven by strong 
environmental selection towards a specific steady state independent 
of their initial composition8. Under other conditions, however, envi-
ronmental selection is weaker, resulting in highly variable assembly 

of communities with more dependence on their initial composition11. 
Uncovering what properties govern this variability in microbial com-
munity assembly constitutes one of the fundamental questions of 
microbial ecology16 and is crucial for successful microbiome engineer-
ing, which aims to steer communities towards a desired structure in 
a given environment17.

Previous studies have explored how one community behaves 
across a range of conditions9,10,18 or how communities behave 
under a single condition11–15. However, systematically comparing 
the fates of multiple communities grown in multiple conditions 
remains an underexplored avenue for understanding microbial 
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complexity relates to the divergence between the same set of com-
munities (beta-diversity).

By tracking how closely the taxonomic structures of these com-
munities resembled each other over time, we found that the effect 
of environmental selection on communities depended on the meta-
bolic complexity of the environment itself. Specifically, different 
microbial communities diverged in their taxonomic composition 
across a gradient of increasingly complex metabolic conditions, sug-
gesting that the forces dominating microbial community assembly 
shift from strong to weak environmental selection in increasingly 
complex conditions. We tested whether a commonly used ecologi-
cal model for microbial ecosystem dynamics8,19–21 could reproduce 
this effect and found that this occurs only upon incorporating a 
representation of the hierarchical structure of metabolite trans-
formations (for example, polysaccharides to oligosaccharides to 
monosaccharides)14,22 and does not depend on how metabolite 
preferences are distributed across taxa. Our results point to an 
ecosystem organization principle that can help reconcile seemingly 
incompatible observations of divergence in different conditions and 
provide guidelines for which environments may be more conducive 
to microbiome engineering.

ecosystem dynamics. Culturing multiple communities in a given 
condition is necessary for understanding how closely those com-
munities converge or diverge taxonomically from each other over 
time. Conversely, exploring these dynamics across many conditions is 
necessary for understanding how divergence depends on properties  
of the environment.

In this Article, we combined experimental measurements and com-
putational modelling to investigate the interplay of initial composition 
and environmental selection in determining the extent to which the 
same set of distinct initial communities tend to resemble each other 
within environments that span a broad range of metabolic complexity. 
We followed the dynamic assembly of diverse microbial communities 
inoculated from different soil samples grown on carbon sources of 
increasing metabolic complexity. We then measured the divergence 
(beta-diversity) between communities within each condition. Since 
metabolic complexity could be measured by the potential for a single 
substrate to give rise to new byproducts and the number of different 
substrates present in the environment18, we investigated single- and 
mixed-metabolite conditions, separately. While other studies have 
explored the relationship between metabolic complexity and (alpha) 
diversity within a community9,18, we now investigate how metabolic 
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Fig. 1 | Microbial communities may diverge in environments with increasing 
metabolic complexity. a–d, Hypothesis of microbial community divergence 
in theoretical simple (b) and complex (c) metabolic conditions. Microbial 
communities A, B and C are initially composed of different compositions of the 
same three microbial species (a; blue, red and yellow). Over time, communities 
grown on a simple substrate (b) converge, while these same communities grown 
on a complex substrate (c) diverge. The lines in b and c show the trajectory of 
each community from the initial composition (circles) to final compositions 
(squares). d, Quantification of divergence (distance between communities 
in the same condition) at the final timepoint (trajectories arriving at squares 
shown in dashed circles above each bar for each condition) for hypothetical 
scenarios in a–c. e–g, Divergence observed in two independent experimental 
studies, one where microbial communities were sourced from soils or leaves and 

grown on glucose (e; a relatively simple metabolic environment from Goldford 
et al., N = 11 communities) and another where communities were sourced from 
pitcher plants and grown on acidified cricket media (f; a more complex metabolic 
environment from Bittleston et al., N = 10 communities). Each coloured line 
in e and f represents the trajectory of a community’s composition over time in 
separately computed MDS projections. The circles indicate the initial community 
composition, and the squares indicate the final community composition. g, The 
divergence for each metabolic environment, calculated as the pairwise distances 
between all communities within a given condition at each timepoint. Each point 
is the mean pairwise distance within condition at each timepoint, and shading 
represents the 95% confidence interval over all pairwise distances within each 
environment at each timepoint.
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Results
The divergence-complexity effect hypothesis
To assess the strength of environmental selection on community assem-
bly, one would ideally compare how the trajectories of multiple distinct 
microbial communities diverge in taxonomic composition across a 
set of conditions. A key question we ask is whether distinct communi-
ties assembled in the same condition tend to become taxonomically 
similar and how the degree of similarity depends on the metabolic 
complexity of the environment. For example, different microbial com-
munities that initially vary in taxonomic composition (Fig. 1a) may 
converge in composition over time when grown in one environment 
(strong environmental selection; Fig. 1b), while those same communi-
ties may diverge in another environment, arriving at alternative stable 
states (weak environmental selection; Fig. 1c). To quantify the degree 
to which different communities differ taxonomically from each other 
when grown in a given condition, we calculate the divergence in com-
munity compositions (i.e. beta-diversity within each condition; Fig. 1d; 
Methods and ‘Measuring divergence with the Aitchison distance metric’ 
section in Supplementary Information).

We initially identified existing data that could indicate whether and 
how community divergence would depend on environmental condi-
tions. Specifically, we re-analysed two independent studies that explored 
how a collection of diverse microbial communities assembled over time, 
but did so under very different conditions. When one study, Goldford 
et al.8, cultured communities in (simple) glucose media, communities 
converged (Fig. 1e). By contrast, when Bittleston et al.11 cultured commu-
nities in (complex) acidified cricket media, they diverged (Fig. 1f). In both 
cases, the initial communities differed substantially from each other and 
then immediately became more similar; however, communities enriched 
on glucose ultimately converged significantly more, despite starting 
with greater variation in initial community composition (Fig. 1g). Based 
on the striking discrepancy in the degree of divergence across these two 
studies, we formulated the hypothesis that divergence increases with the 
metabolic complexity of the provided resources (Fig. 1d), a relationship 
that we will refer to as the divergence-complexity effect.

Community divergence increases with metabolic complexity
To directly test the divergence-complexity effect, we designed an exper-
iment to quantify the divergence of microbial communities grown in 
conditions of increasing metabolic complexity (Methods and Fig. 2a). 
To assess divergence, we sourced six microbial communities from forest 
soils, which are generally diverse and distinct from each other23, even 
over small (centimetre) spatial scales7. Each microbial community was 
grown in nine different minimal media, each supplemented with equi-
molar carbon concentrations of at least one carbon source commonly 
found in soils24: (1) citrate, (2) glucose, (3) cellobiose, (4) cellulose, (5) 
lignin, (6) citrate + glucose, (7) citrate + glucose + cellobiose, (8) citrate +  
glucose + cellobiose + cellulose or (9) citrate + glucose + cellobiose + 
cellulose + lignin (Methods).

In testing the divergence-complexity effect, we consider metabolic 
complexity to increase from citrate to lignin (in line with the number of 
metabolic byproducts expected from each metabolite18), enabling us 
to define a clear gradient of complexity separately for single metabo-
lites, from condition 1 to 5, and mixed metabolites from condition 6  
to 9. Lignin can be depolymerized extracellularly by a variety of 
enzymes into a diversity of polyphenolic compounds, which can be 
broken down into aromatic compounds, and eventually cleaved into 
respirable or fermentable byproducts25–29. Cellulose, a polysaccharide 
composed of repeating glucose subunits, can be degraded by cellu-
lases30 into cellobiose (a disaccharide of a pair of glucose molecules) 
and glucose itself31. Citrate32, the simplest carbon source in our experi-
ment, is an organic acid related to each of the metabolites in our study 
as an intermediate of respiration. Given that our culture conditions 
were probably not fully aerated, the above metabolites are expected 
to ultimately be used by the communities through a mixture of aero-
bic and anaerobic metabolism, not unlike what is experienced by soil 
microbial communties33–36.

Each microcosm, containing one source community growing in 
one condition, was serially passaged ten times, in intervals of 3 days. 
16S ribosomal RNA sequencing was performed and amplicon sequence 
variant (ASV) counts were generated for the initial soil inocula and for 
microcosm communities at days 3, 6, 9, 12 and 33 (excluding 48/384 
samples; Extended Data Table 1 and Methods). The divergence for each 
condition was then calculated by computing the distance between all 
pairs of communities within each condition for each day (Methods). 
For increased accuracy at our final timepoint, the divergence for day 33 
communities was computed by averaging the distances between three 
replicates for each community (excluding one community, where only 
two replicates were available; Extended Data Table 1).

Supporting our hypothesis of the divergence-complexity effect,  
we observed that divergence increased for both of our axes of meta-
bolic complexity (single and mixed conditions; Fig. 2b–f). In accord-
ance with previous studies (Fig. 1e,f), our source communities started 
differently from each other and initially converged (Fig. 2b,c) and stabi-
lized once introduced to laboratory conditions (Fig. 2d and Extended 
Data Fig. 1). Within single-metabolite conditions, the communities con-
verged strongly on simple metabolites, while they diverged to increas-
ingly distinct states on the more complex metabolites (Fig. 2b,d–f). 
At the final timepoint, divergence occurred in a discrete fashion with 
similarly low levels between citrate and glucose, similarly high lev-
els between cellulose and lignin, and an intermediate level of diver-
gence on cellobiose (Fig. 2e), which may be related to where each 
metabolite is enzymatically processed (citrate and glucose: intra-
cellularly, cellulose and lignin: extracellularly, and cellobiose: both 
ways37). Similar to single-metabolite conditions, community diver-
gence increased from the least (citrate + glucose) to the most diverse 
(all metabolites) mixed-metabolite conditions (Fig. 2c–f). For single- 
and mixed-metabolite conditions, the divergence-complexity effect 

Fig. 2 | Divergence of microbial communities increases in environments of 
increasing metabolic complexity. a, Study design: microbial communities  
were extracted from six forest soils and were then grown in nine conditions 
(citrate, glucose, cellobiose, cellulose, lignin, citrate + glucose, citrate + glucose +  
cellobiose, citrate + glucose + cellobiose + cellulose and citrate + glucose + 
cellobiose + cellulose + lignin). Communities were passaged ten times once every 
3 days and sequenced on days 0, 3, 6, 9, 12 and 33 (N varies for each community; 
Extended Data Table 1). b,c, MDS projections of community trajectories over 
time in each single-metabolite condition (b) and mixed-metabolite condition 
(c). MDS was calculated on all samples together for ease of visually comparing 
trajectories between conditions. The circles indicate the initial community 
composition, and the squares indicate the final community composition.  
d, Divergence of communities within each condition over time from day 3 
onwards. Initial communities are a distance of 58.1 ± 3.5 (not shown for clarity). 
Single-metabolite conditions are in blue, mixed conditions are in orange and 

colours darken with complexity. The points on each line represent the mean 
divergence, and the shaded region represents the 95% confidence interval for 
pairwise distances between all six communities within each condition.  
e, Distribution of divergence between all six communities at the final timepoint 
where divergence increases with metabolic complexity for single- and mixed-
metabolite conditions (same colours as d). Each point is a pairwise distance 
between two communities (N = 15 per condition). The boxes are bound by the 
interquartile range, divided by the median, and whiskers extend to a maximum 
of 1.5 times the interquartile range. f, Divergence-complexity effect by condition 
type (slopes shown in e) for all timepoints (one-sided Wald test on effect (slope) 
>0, P values shown in figure for each day and condition type). All divergence 
results for communities at day 33 are the mean distances between up to three 
replicates for each community (see list of all samples and conditions in Extended 
Data Table 1). Cit, citrate; Glu, glucose; Cello, cellobiose; Cellu, cellulose.
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was detectable at each sampled timepoint (Fig. 2f and Extended Data 
Fig. 2), suggesting that the effect occurred rapidly (as early as day 3)  
and was sustained irrespective of possible evolutionary changes. While 
evolutionary adaptation to utilizing new nutrients tends to occur at 
much longer timescales38–40, we cannot rule out the role of strain evolu-
tion in our longitudinal analysis41.

Interestingly, the effect was stronger in single-metabolite condi-
tions than in mixed-metabolite conditions (Fig. 2e,f). One possible 
explanation for this trend includes priority effects42, where assembly 
dynamics are dependent on the order in which different metabolites 
become available through trophic interactions10. Another possibil-
ity is that divergence was sensitive to the concentration of complex 

6 sites ×6
9 conditions 9 combinations

Lignin
Cellulose
Cellobiose
Glucose
Citrate

10 
passages

16S
sequencing

a

Complexity

Si
ng

le
 

m
et

ab
ol

ite
M

ix
ed

 
m

et
ab

ol
ite

b

c

d

e f

−40 −20 0 20 40

−40

−20

0

20

40

M
D

S2

Cit

−40 −20 0 20 40

Glu

−40 −20 0 20 40

Cello

−40 −20 0 20 40

Cellu

−40 −20 0 20 40

MDS1

Lignin

−40 −20 0 20 40

MDS1

−40

−20

0

20

40

M
D

S2

Cit + Glu

−40 −20 0 20 40

MDS1

Cit + Glu + Cello

−40 −20 0 20 40

MDS1

Cit + Glu + Cello + Cellu

−40 −20 0 20 40

MDS1

Cit + Glu + Cello + Cellu + Lignin

5 10 15 20 25 30

Days

18

20

22

24

26

28

30

32

D
iv

er
ge

nc
e

(d
is

ta
nc

e 
w

ith
in

 c
on

di
tio

n)

Condition
Cit
Glu
Cello
Cellu
Lignin
Cit + Glu
Cit + Glu + Cello
Cit + Glu + Cello + Cellu
Cit + Glu + Cello + Cellu + Lignin

Condition

18

20

22

24

26

28

30

32

D
iv

er
ge

nc
e

(d
is

ta
nc

e 
w

ith
in

 c
on

di
tio

n)

3 6 9 12 33
Days

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
iv

er
ge

nc
e-

co
m

pl
ex

ity
 e

�e
ct

(s
lo

pe
)

P = 8 × 10−6

P = 3 × 10−5

P = 4 × 10−1

P = 9 × 10−4

P = 1 × 10−3

P = 5 × 10−4

P = 1 × 10−7

P = 1 × 10−2

P = 2 × 10−11

P = 5 × 10−5

Condition type
Single Mixed

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02440-6

metabolites43. Since the total carbon concentration was kept constant 
across all conditions, the concentration of complex metabolites was 
highest in single-metabolite conditions and decreased incremen-
tally for each subsequently complex mixed-metabolite condition 
(Methods).

Since it is common for many taxa to engage in functionally redun-
dant actitivies44,45 and since our data are generated from amplicon  
sequencing, we cannot conclude whether these taxonomically 
divergent communities are utilizing similarly divergent metabolic 
pathways46. However, when we recomputed divergence at the family 
taxonomic level (Extended Data Figs. 3 and 4) where bacteria often  
differ in metabolic functions15, we still observed the divergence- 
complexity effect, which suggests that our communities that assembled 
to distinct taxonomic compositions may have also engaged in distinct 
metabolic activities.

Divergence, which was high across different source communities 
in complex conditions, was significantly lower across replicates from 
the same source community. Replicate microcosms assembled from 
the same source converge to similar final states after 33 days (Extended 
Data Fig. 5). Conversely, communities sourced from different locations, 
even if they displayed similar initial composition, did not necessarily 
converge (Fig. 2b,c). This suggests that, while assembly dynamics are 
indeed complex (initially similar communities can diverge), they are 
reproducible (replicate microcosms converge). While previous studies 
have reported that stochasticity can be responsible for multistability, 
this similarity across replicate experiments suggests that stochasticity 
is not the main driver of divergence in our communities15. Our observa-
tions are consistent with simulation work that suggests that multista-
bility can take place without stochastic fluctuations in environments 
containing multiple essential nutrients47. Ultimately, the community 
assembly trajectories we observed in our experiment show that com-
plex environments can support a greater number of discrete states 
than simple environments but that these discrete environments may 
be achievable only from distinct initial conditions.

Diversity correlates with divergence, implicating specialists
To gain a deeper understanding of the divergence-complexity effect, we 
investigated how alpha-diversity within each individual community cor-
relates with divergence across communities. In particular, two separate 
principles could jointly give rise to the divergence-complexity effect. 
The first principle, ‘metabolic complexity begets diversity’, where com-
munity diversity increases with increasing metabolic complexity, has 
been experimentally documented in both natural and synthetic com-
munities9,18. A yet unexplored second principle that we investigate in 
our study, ‘diversity begets divergence’, could result from the expec-
tation that more diverse communities generally diverge more from 
one another (see ‘Divergence is sensitive to richness and evenness’ 
section in Supplementary Information; Fig. 4d). In general, the amount 
of divergence we observe is greater than expected from richness alone, 
suggesting that differing distribution of taxa (skewness) between com-
munities substantially contributes to the divergence-complexity effect 
(Supplementary Fig. 1). If metabolic complexity were to yield diver-
sity and diversity were to yield divergence, we would expect higher 
divergence in increasingly complex conditions, contributing to the 
divergence-complexity effect.

Consistent with these expectations, we observed a strong linear 
relationship between diversity and divergence, which strengthened 
over time, indicating that specific changes in community assembly 
drive the rise of divergence. The slope of the diversity–divergence rela-
tionship increased over time (Fig. 3a, black line, Fig. 3b and Extended 
Data Fig. 6), despite the fact that diversity itself, on average, decreased 
(Fig. 3a, red line). In other words, over time, the same degree of diver-
gence is maintained by communities with reduced diversity. For diver-
gence to remain relatively stable (Fig. 2d) while diversity decreases, 
taxa endemic (that is, specific) to each community must persist while a 
set of species shared across communities universally go extinct within 
each condition. One possible explanation for this trend is that these 
persistent taxa are metabolic specialists, which produce enzymes that 
target specific biochemical bonds48. In conjunction with our previous 
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observations that communities diverge more in complex conditions, 
we hypothesized that specialists that target complex metabolites were 
less evenly distributed across communities than taxa that specialize 
on simpler metabolites, driving the divergence-complexity effect.

Specialists are more endemic in complex conditions
To investigate the role of specialists in the divergence-complexity effect, 
we explored the distribution of taxa across experimental conditions and 
source communities. If specialists drive the diversity-complexity effect, we 
would expect to see that specialists are increasingly endemic, or unevenly 
distributed across source communities, in more complex conditions.

To quantify the degree of specialization, we computed a condition- 
specificity metric for each taxon (ASV) in each condition and then 
assessed whether specialization and endemism depended on meta-
bolic complexity. We defined condition specificity for each taxon 
and condition as the fraction of communities in which that taxon 
was found at the final sampling timepoint for that given condition. In 
particular, if a taxon occurs in only one condition, its condition speci-
ficity is 1 and will be referred to as a ‘specialist’. In accordance with our 
expectations, we observed that more complex conditions (particularly 
single-metabolite ones) had greater condition specificity (Fig. 4a) and 
more specialists (Fig. 4b). Given the broad phylogenetic distribution 
of traits associated with degrading and utilizing the byproducts of cel-
lulose49 and lignin25–27, these condition-specific taxa may be perform-
ing redundant metabolic functions in their respective communities.

These results alone are encouraging but are not sufficient for link-
ing specialists to the divergence-complexity effect, which would addi-
tionally require specialists to differ between communities in the same 
condition. While we observed an enrichment of condition-specific taxa 
in complex conditions, it hypothetically could be the case that these 
same taxa were found across all source communities, in which case 
communities in complex conditions would not necessarily diverge 
substantially more than those in simple conditions (Fig. 4d, H1 and 

Supplementary Fig. 1). However, when we count the occurrence of 
each taxon in each condition and source community, we find that 
condition-specific taxa are also source community specific (endemic; 
Fig. 4c). As a result, taxa that specialize on complex metabolites are 
less evenly distributed across communities than taxa that specialize 
on simpler metabolites and are therefore heavily implicated in mediat-
ing the divergence-complexity effect (Fig. 4d, H2 and Supplementary 
Fig. 1).

Trophic resource transformations reproduce divergence
To better understand what properties of microorganisms and their 
environment are necessary for the diversity-complexity effect, we 
performed a series of simulations with microbial consumer-resource 
models (CRMs; Methods)19. In particular, we wanted to corroborate 
our hypothesized mechanism of the diversity-complexity effect: that 
divergence correlates with metabolic complexity and emerges from 
endemism of specialist taxa.

CRMs are dynamical ecological models where consumers are 
defined by the set of resources they prefer (consumer preferences) 
and resources are transformed by consumers into other resources 
following consumption (resource transformations). Overlapping 
consumer preferences give rise to competition, while the exchange 
of transformed products can generate cross-feeding interactions19. 
Cross-feeding can take many different shapes in natural communities, 
including adaptive cooperation among auxotrophs50, secretion of 
central carbon metabolism intermediates51–56 or fermentation prod-
ucts57, extracellular degradation of complex macromolecules whose 
byproducts are shared with community members58, or stress-induced 
cross-feeding59. While cross-feeding in CRMs is often assumed to reflect 
exudation of intracellular intermediates19, CRMs can still be inter-
preted as approximating a broader set of mechanisms, including those 
mentioned above (see ‘Generality of cross-feeding mechanism in our 
consumer-resource model’ section in Supplementary Information).
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1.5 times the interquartile range. Diamond symbols indicate outliers passed 1.5× 
beyond the interquartile range. b, The number of specialists per condition (taxa 
with condition specificity = 1). c, Taxon occurrence by number of conditions and 
number of source communities. ASVs found in fewer conditions are less evenly 

distributed across source communities (found in fewer source communities), 
and taxa found in more conditions are more evenly distributed across source 
communities. d, Two hypotheses for single-metabolite conditions following 
from a and b, where H2 is supported and H1 is not. H1: more complex conditions 
are enriched for specialists, and when those taxa are evenly distributed across 
source communities, it results in relatively similar divergence for complex and 
simple metabolic conditions. H2: when more complex conditions are enriched 
for specialists and these taxa are less evenly distributed across communities, 
more complex conditions result in greater divergence. Cit, citrate; Glu, glucose; 
Cello, cellobiose; Cellu, cellulose.
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In implementing a CRM, we sought to investigate how the divergence- 
complexity effect depends on consumer preferences and resource trans-
formations. These consumers and resources are typically arranged in a 
trophic structure, where taxa specialize in the hierarchical consumption 
of environmentally available metabolites and cross-feed the resulting 
(simpler) byproducts to taxa at subsequently lower trophic levels10,22. 
Trophic interactions are implicated in explaining the immense diversity 
of microbial communities since only certain organisms can break down 
the most complex resources in a given environment22 and, on average, 
half of a microbial community’s members are auxotrophic and require a 
cooperative interaction with another organism for essential nutrients50.

Taxonomic structure in CRMs can be represented by specifying 
what resources each consumer prefers (Extended Data Fig. 7c,d). In our 

models, we defined trophic consumer preferences with ‘families’ of spe-
cialists, or modules of consumers that have similar resource preferences 
(specialization)10, and generalists, which have a broad distribution of pref-
erences (Extended Data Fig. 7c). In line with our experimental observa-
tions (Fig. 4), we set the number of different specialists to be proportional 
to the complexity of the resource type they prefer. We also generated 
random controls where consumer preferences were assigned randomly 
(Extended Data Fig. 7d). The use of such random structure has been 
used successfully to reproduce certain ecological patterns, suggesting 
that community assembly can be well approximated by random, dense, 
complex interactions between microbes and their environment20,60.

Metabolic structure can be represented by assuming that, upon 
metabolization, resources of a given type transform into resources 
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Fig. 5 | Trophic resource transformations reproduce divergence-
complexity effect with CRM simulations. The distribution of divergence 
for six communities simulated with CRMs with and without trophic structure 
in resource transformations and consumer preferences. Mimicking our 
experiment, community growth was simulated in single-metabolite (blue) 
and mixed-metabolite (orange) conditions of increasing complexity (from 
lighter to darker). a–d, Divergence for communities simulated with trophic 
resource transformations and consumer preferences (fully structured; a), 
trophic resource transformations and random consumer preferences (resource 
structured; b), random resource transformations and trophic consumer 
preferences (consumer structured; c) and random resource transformations and 
consumer preferences (fully random; d). Each box describes the distribution of 

pairwise distances between all six simulated communities (N = 15 per box). The 
boxes are bound by the interquartile range, divided by the median, and whiskers 
extend to a maximum of 1.5 times the interquartile range. Diamond symbols 
indicate outliers passed 1.5× beyond the interquartile range. e,f, The effect of 
metabolic complexity on divergence for single- and mixed-metabolite conditions 
with trophic resource transformations (e) and random transformations (f) for 
resource transformations (R) and consumer preferences (C) (one-sided Wald 
test, P values shown in figure for each parameterization and condition type). 
g,h, Using the fully structured configuration, the relationship between diversity 
and mean divergence where the shaded region represents the 95% confidence 
interval (g) and the relationship between occupancy in conditions and number of 
source communities (h).
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of another specific type (Extended Data Fig. 7a,b). In our models, we 
defined trophic resource transformations such that complex resources 
transformed into simpler ones in a hierarchical fashion20 (Extended 
Data Fig. 7a). Similar to random consumer preferences, we defined 
random resource transformations where resources of one type could 
transform into each other randomly (Extended Data Fig. 7b).

To investigate the role of taxonomic and metabolic structure in 
community divergence, we simulated communities growing in increas-
ingly complex conditions. We performed these simulations (Fig. 5) 
using four different CRM configurations (Extended Data Fig. 7): trophic 
consumer preferences and trophic resource transformations (fully 
structured; Fig. 5a), random preferences and trophic transforma-
tions (resource structured; Fig. 5b), trophic preferences and random 
transformations (consumer structured; Fig. 5c), and random pref-
erences and transformations (fully random; Fig. 5d). Similar to our 
experimental design, all four model configurations were initialized 
with six source communities and seven conditions (four single- and 
three mixed-resource conditions; Extended Data Fig. 7e,f) and growth 
dynamics were simulated until reaching a steady state. To understand 
whether the divergence-complexity effect could emerge solely from 
the ecological forces encoded in our model (consumer preferences 
and resource transformations), we assumed physiological parameters, 
such as rates of consumer growth, consumer maintenance, resource 
utilization, resource energy density and leakage, to be uniform across 
all consumers and resources19,20.

Surprisingly, our simulations showed that trophic structure of 
the resource transformations alone was necessary and sufficient 
to reproduce the divergence-complexity effect in both single- and 
mixed-resource conditions (Fig. 5a–f). Even when consumer prefer-
ences were random, the divergence-complexity effect was still observed 
as long as resource transformations were structured (Fig. 5a,b,e). How-
ever, whenever resource transformations were random, all communi-
ties diverged equally, irrespective of metabolic complexity, and, thus, 
there was no divergence-complexity effect (Fig. 5c,d,f).

In addition to reproducing the divergence-complexity effect, our 
model recovered, as emergent properties, further non-trivial trends 
detected in our experiment. For example, in model configurations 
with trophic resource transformations, the divergence-complexity 
effect was greater for single-resource conditions than mixed ones 
(Fig. 5e), as observed experimentally (Fig. 2f). Additionally, the maxi-
mum divergence in single resource conditions exceeded that of mixed 
conditions (Figs. 5a,b and Fig. 2e). These model configurations also 
reproduced our downstream analyses, such as the correlation between 
divergence and diversity (Figs. 5g and 3b) and the tendency for spe-
cialists to be endemic (Figs. 5h and 4d). The reproduction of all of 
these patterns with physiologically neutral consumers (uniform physi-
ological parameters) and resources implicates the trophic metabolic 
structure in resource transformations as the driving mechanism of the 
divergence-complexity effect.

Discussion
Compelled by recent experiments that found that microbial community 
diversity increases with metabolic complexity9,18, we sought to reconcile 
contradictory interpretations of whether microbial communities tend 
to converge8 or diverge11 in the same conditions. By jointly revisiting 
these two propositions, we hypothesized and provided support for the 
divergence-complexity effect as a quantitative ecological principle that 
resolves this contradiction. While previous work explored community 
assembly by modulating the complexity of metabolic conditions9,10,18 or 
the variability of source communities8,11,12, the divergence-complexity 
effect could be observed only by systematically varying both, that is, 
analysing multiple source communities under increasingly complex 
conditions. We found that divergence correlates strongly with diver-
sity, which is driven by an enrichment of specialists in complex condi-
tions. We concluded our analysis by reproducing these results using 

CRM simulations, which provide insights into the potential ecological 
mechanisms of the divergence-complexity effect.

While our experimental results are robust and reproducible, they 
necessarily rely on specific design constraints and assumptions. Experi-
mental choices that could be revisited in future studies include the 
passaging time, chosen here to be 3 days, as used in other microbial 
community assembly studies with complex metabolites11; the selection 
of metabolites, which constitute a representative, but oversimplified 
version of the metabolic complexity of soil environments; our plate 
shaking rate (Methods), which may have affected oxygen availability61 
and the balance of aerobic and anaerobic metabolism; and the focus on 
taxonomic divergence (through 16S amplicon sequencing) rather than 
functional divergence, which would require a comprehensive profil-
ing of microbial functions with metagenomics, metatranscriptomics 
or metabolomics. Furthermore, future research could explore which 
environmental parameters, in addition to metabolic complexity, may 
drive divergence62,63.

The most surprising result from our simulations was how struc-
tured resource transformations (where complex metabolites are 
progressively degraded into simpler ones), but not consumer pref-
erences, were required for reproducing the divergence-complexity 
effect (Fig. 5). A possible interpretation of this result is that microbial 
community assembly and dynamics are strongly dependent on the 
actual structured architecture of metabolism, which differs sub-
stantially from a network of random transformations20,60. To test the 
generality of the divergence complexity, we tried to minimize the 
use of data-derived parameters in the model. One exception is the 
parameterization of structure in consumer preferences based on our 
observed distribution of taxa, which is in any case ultimately shown to 
be unnecessary to yield the divergence-complexity effect. Conversely, 
we cannot rule out that additional or alternative data inputs into the 
model could affect its performance. For example, our CRMs lacked 
the encoding of certain processes that are known to affect microbial 
community assembly such as nuanced cross-feeding mechanisms 
(Supplementary Information), diffusion64, transcriptional regula-
tion65, trade-offs between growth rate and enzyme production66,67, 
evolution41 and antibiotics68. Explicit measurement of these processes 
in future studies or inclusion with other ecological models69 could help 
to reveal further mechanistic insights into the diversity-complexity 
effect. However, the fact that our current model captures so many of 
our experimental observations lends confidence to the dominant role 
that the architecture of metabolism plays in community structure, 
corroborating previous reports18.

Importantly, the divergence-complexity effect has direct impli-
cations for the engineering of microbial communities towards any 
target, suggesting that metabolically complex environments may 
be more susceptible to microbiome engineering than simple ones. 
Potential targets for microbiome engineering include correcting the 
dysbiosis in the human gut2 and increasing the carbon stabilization 
capacity of soils5, among many other microbially regulated traits. The 
consequences of the divergence-complexity effect are encouraging for 
efforts along these lines, since complex environments may be more 
likely to support an alternative community that is equally stable as the 
original one but with potentially increased expression of a trait of inter-
est. Approaches such as directed evolution, where a set of microbial 
communities undergoes iterative rounds of perturbation and artificial 
selection to assemble high-performing communities70, offer an ideal 
strategy for exploring the different alternative states that a complex 
environment can support. Future research is required to understand 
how, in light of functional redundancy, the divergence in taxonomic 
composition that we observe relates to divergence in functional com-
position, since modifying functional activity is commonly the goal 
of microbiome engineering efforts. Ultimately, we envisage that the 
awareness of the divergence-complexity effect may help microbial 
ecologists reframe the role of environmental selection in microbial 
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community assembly and enable further research into microbiome 
engineering in complex environments.

Methods
Media preparation
Eleven different media were generated at equimolar (50 mM) con-
centrations of carbon (C) in increasing levels of complexity. Stocks 
of citrate, glucose, cellobiose, cellulose and lignin were generated at 
1 mol C l−1 (1 M C) and then sterilized. Citrate, glucose and cellobiose 
stocks were sterilized through 0.2 μm RapidFlow filters, while cellulose 
and lignin stocks, whose particle sizes were too large for filters, were 
autoclaved. C source stocks were then mixed with M9 minimal media 
(5× M9 salts (BD Difco), 1 M MgSO4, 1 M CaCl2, 1,000× trace minerals)71 to 
form the following nine conditions, each made at a final concentration 
of 50 mM C and with equal ratios of each C source (Sigma-Aldrich) for 
each condition: citrate, glucose, cellobiose, cellulose, lignin, citrate + 
glucose, citrate + glucose + cellobiose, citrate + glucose + cellobiose +  
cellulose and citrate + glucose + cellobiose + cellulose + lignin. All 
media were stored in glass bottles, wrapped in foil and stored at 4 °C.

Sample collection and microbial community extraction
On 27 October 2022, about half a pound of organic horizon soil (5–10 cm 
deep) was collected from six sites at Harvard Forest in Petersham,  
Massachusetts, United States, following sampling approval from  
Harvard Forest staff. Two were pine dominated, two were hardwood 
dominated and two were mixed. Samples were collected 15 m from the 
forest edge and kept on ice until transported back to the laboratory the 
same day. Fresh soils were sieved through a 2 mm mesh and then stored 
at 4 °C. On 21 November 2022, 20 g of each sieved soil was individually 
combined with 100 ml of sodium pyrophosphate to separate cells from 
soils72 and was blended for three cycles of 10 s at ~22,000 RPM and then 
off for 10 s, and then 25 ml of the resulting slurry was transferred to 
a centrifuge tube. The blender was washed between each sample by 
blending in 500 ml of diluted bleach. Following the blending of all soils, 
each slurry was centrifuged for 10 min at 20,000g, resuspended in 30 ml 
of phosphate-buffered saline and rocked on an orbital shaker for 1 h  
(ref. 18) at 4 °C. After rocking, samples were allowed to settle for 5 min 
and then passed through a 100 μm cell straining filter. Optical density 
(OD) measurements were performed at 600 nm at a 1:20 dilution, 500 μl 
of each sample was stored at −80 °C in 20% glycerol and the remaining 
volume from each sample was used for inoculating experimental plates.

Experimental culturing
Community extracts were added to 96-deep-well plates in triplicate 
with all media combinations (3 replicates of each source community 
in each condition), generating a total of 162 microcosms (9 media com-
binations × 6 source communities × 3 replicates). Cycloheximide, an 
antifungal agent, was added to each well at 200 μg ml−1 (ref. 73) to reach 
a final OD of 0.1 and volume of 400 μl per well. Plates were then stored in 
an incubator at 25 °C under constant shaking at 200 RPM. Communities 
were passaged every 72 h into fresh media at a 1:20 dilution (without 
cycloheximide) for a final volume of 400 μl, OD600 was measured and 
the remaining volume was stored at −80 °C for DNA extraction.

DNA extraction and sequencing
DNA extraction for the six initial forest soil communities was performed 
using the PowerSoil DNA extraction (QIAGEN). After adding lysis buffer, 
samples underwent three cycles of freezing in liquid nitrogen, warming 
at 55 °F in a water bath and bead-beating for 1 min (PowerLyzer, MoBio), 
then following the provided protocol for the remainder of the extrac-
tion. DNA was extracted from an additional 330 lab-cultured samples 
from days 3, 6, 9, 12 and 33, where available (Extended Data Table 1). 
DNA extraction from lab-cultured samples was performed using the 
PureLink Pro 96 Genomic DNA Kit (ThermoFisher) following the pro-
vided protocol except for extending all lysis incubation periods to 2 h. 

DNA extracts were sent to Quintara Biosciences for library preparation 
and 16S amplicon sequencing using V4 primers 515 F (GTGYCAGCMGC-
CGCGGTAA) and 806 R (GGACTACNVGGGTWTCTAAT) on a single 
Illumina MiSeq run.

Amplicon sequence processing
We received raw sequencing data for our study from Quintara Bio-
sciences and downloaded raw sequencing data from Goldford et al.8 
(SRP144982) and Bittleston et al.11 (SRP218147) from NCBI. All raw 16S 
sequencing data for each study were separately processed using BU16S 
(https://github.com/Boston-University-Microbiome-Initiative/BU16s), 
a QIIME274 pipeline customized to run on Boston University’s Shared 
Computing Cluster. Briefly, BU16S first trims primers and filters out 
reads of less than 50 base pairs using cutadapt75, then obtains ASVs 
using dada276 and finally classifies ASVs with 95% or greater sequence 
identity to the SILVA_132_99 database with VSEARCH77.

Data analysis
All data analysis was performed in Python version 3.8.11. Pairwise dis-
tances between samples were computed with the Aitchison distance 
because it accounts for the compositional nature of sequencing data, 
unlike common distance metrics, such as Bray–Curtis, Jenson–Shannon  
divergence and Unifrac78,79. The Aitchison distance, A, between two 
compositions x and y is

A(x,y) = ‖
‖clr(x) − clr(y)‖‖

clr(x) = (log(x1/G(x)),… , log(xn/G(x)))

G(x) = (x1 ⋅ x2 ⋅ … ⋅ xn)
1/n,

where clr is the centre-log ratio transform and G is the geometric 
mean. Divergence was computed by calculating the Aitchison distance 
between all pairs of samples within a condition at each timepoint (see 
‘Measuring divergence with the Aitchison distance metric’ section 
in Supplementary Information for more details). The divergence for 
samples at day 33, where we have up to three replicates for each com-
munity, was reported as the mean pairwise distance between all repli-
cates in all analyses. The divergence-complexity effect was calculated 
for each condition type (single- and mixed-metabolite conditions) and 
timepoint as the slope of a linear least-square regression with metabolic 
complexity as the independent variable and divergence between all 
community pairs as the dependent variable. In these linear models, 
the metabolic complexity of each condition was treated ordinally, 
increasing from citrate to lignin for single-metabolite conditions and 
from citrate + glucose to all metabolites for the mixed-metabolite 
conditions. The significance of the divergence-complexity effect for 
condition and timepoint was computed with a one-sided Wald test with 
a null hypothesis of a slope of zero. The mean divergence for each sam-
ple in a given condition was computed as the mean pairwise distance 
from each sample to all other samples in that condition.

Dimensionality reduction of pairwise distances was performed 
using multidimensional scaling (MDS) in scikit-learn80. MDS was com-
puted separately for samples from Goldford et al. and Bittleston et al., 
while, for our data, MDS was computed jointly on all samples to allow 
for ease of comparability when viewing community trajectories in 
separate conditions.

Alpha-diversity was computed by first rarefying (subsampling) all 
samples to 5,028 reads and dropping 12 samples below this sequencing 
depth from subsequent alpha-diversity analyses. The Shannon diversity 
index was calculated as −Σixilnxi and the ecological richness was calcu-
lated as Σixi > 0 for the abundance, x, of each taxon, i, within a sample.

Condition specificity was calculated for each ASV by calculating 
the fraction of times each ASV was present in each condition. ASVs with 
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a condition specificity of 1 were considered ‘specialists’ since they were 
found to occur in only a single condition.

Consumer-resource models
We simulated the growth of 168 microcosms (6 communities × 7 condi-
tions × 4 configurations) using microbial CRMs. All model parameters 
are discussed below and summarized in Extended Data Table 2. With 
microbial CRMs, the dynamics of species and resources can be mod-
elled with

dNi
dt

= Ni (∑
α
(1 − l)ci,αRα −m)

dRα
dt

= (R0
α − Rα) −∑

j
N jc j,αRα +∑

j,β
N jc j,βRβDα,βl,

where Ni is the abundance of species i, Rα is the concentration of resource 
α, R0

α is the resource supply concentration, l is the leakage fraction (how 
much of α is ‘leaked’ or converted into β, where the rest is converted into 
biomass), m is the consumer maintenance cost, ci,α is the consumer 
preference matrix and Dα,β is the resource transformation matrix 
describing the rate that β turns into α following consumption19. We fixed 
the leakage (l = 0.8), maintenance (m = 1) and uptake rates (ci,α = {0, 1}) 
for all consumers, resulting in an ‘physiologically neutral’ model.

To study the impacts of trophic structure on divergence, we 
explored four different CRM configurations that varied in whether or 
not resource transformations or consumer preferences were trophi-
cally structured or random (Extended Data Fig. 7). Resources were 
defined by establishing a resource pool of four resource types, T0, T1, 
T2 and T3, where each type consisted of 80, 60, 40 and 20 resources, 
respectively. Trophic resource transformations were parameter-
ized by defining resources of one type to subsequently transform 
into resources of another type in a unidirectional fashion, with some 
self-renewal (Extended Data Fig. 7a). For example, T0-type resources 
mostly transform into T1-type resources and some T0-type resources 
(Extended Data Fig. 7a). Random resource transformations were 
defined by allowing each resource transform into any other resource 
with uniform probability (Extended Data Fig. 7b). Transformation 
profiles for each resource in both configurations were sampled from 
Dirichlet distributions.

Consumers were defined by establishing a metacommunity of 
four ‘families’, F0, F1, F2 and G, where each type consisted of 500, 300, 
100 and 100 consumers, respectively. Trophic consumer preferences 
were defined by allowing consumers of each family to utilize a total 
of 35 sampled resources from their associated type (that is F0 con-
sumers could utilize T0 resources) and a common resource type. The 
skewed distribution of consumer family size was chosen to model our 
experimental results where the number of specialists correlated with 
metabolite complexity. Consumers belonging to the G (generalist) fam-
ily could consume resources of any type (Extended Data Fig. 7c). Ran-
dom consumer preferences were defined by allowing each consumer 
to utilize 35 random resources from any type (Extended Data Fig. 7d). 
Code for sampling trophic resource transformations and trophic 
consumer preferences can be found via GitHub at https://github. 
com/michaelsilverstein/ms_tools/blob/main/ms_tools/crm.py.

Initial conditions and source communities were defined to mimic 
our experimental design. Seven conditions were defined by sampling 20 
resources each with an initial abundance of 50 from each resource type 
for single-metabolite conditions (T0, T1, T2 and T3) and from mixtures 
of resource types for mixed-metabolite conditions (T3 + T2, T3 + T2 + T1 
and T3 + T2 + T1 + T0; Extended Data Fig. 7e). Six source communities  
were defined by sampling 200 consumers from the metacommunity 
each with an initial abundance of 1 (Extended Data Fig. 7f).

The dynamics of each source community was then simulated 
in each condition using all four parameter configurations (trophic 

transformations and preferences, trophic transformations and ran-
dom preferences, random transformations and trophic preferences, 
and random transformations and preferences), and the divergence 
was computed for each condition and configuration. Simulations of 
community assembly were performed by passing model parameters 
(D matrix, c matrix and initial conditions) to the Community Simula-
tor package21, which provides utility functions for constructing and 
solving the system of ordinary differential equations. To appropriately 
compare our simulation results, which simulates actual abundances of 
each consumer, with our experimental results, which reports relative 
abundance of each ASV, we rescaled the abundance of all communities 
to the same range to simulate the process of sequencing. Divergence 
was then calculated on the rescaled simulated community composi-
tion profiles in the same way as with our experimental data (using the 
Aitchison distance).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All raw 16S sequencing data and associated metadata generated 
for this study can be accessed with the NCBI BioProject accession 
PRJNA1074799 (https://www.ncbi.nlm.nih.gov/sra/PRJNA1074799). 
All processed data used in our analyses can be found on GitHub at  
https://github.com/segrelab/MetabolicComplexityDivergence. Source 
data are provided with this paper.

Code availability
All analysis and simulation code can be found on GitHub at 
 https://github.com/segrelab/MetabolicComplexityDivergence.
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Extended Data Fig. 1 | Microbial communities stabilize. Each point is the mean distance to a community’s previous timepoint within each condition and the shaded 
region represents the 95% confidence interval. On day 3, communities are substantially different from their initial state and then continue to change in composition, 
but by approximately the same amount.
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a

b c

Extended Data Fig. 2 | Divergence of a subset of communities which are 
available for all days. A reproduction of Fig. 1d–f, but excluding all samples 
from communities HF1P and HF3H, which are missing data for days 3, 6, and 9 
(Extended Data Table 1). a, Divergence of communities within each condition 
over time from day 3 onwards. Points on each line represent the mean divergence 
and the shaded region represents the 95% confidence interval for pairwise 

distances between all four included communities within each condition.  
b, Distribution of divergence for the final time point. Boxes are bound by the 
interquartile range, divided by the median, and whiskers extend to a maximum 
of 1.5 times the interquartile range. c, Divergence-complexity effect by condition 
type for all time points (one-sided Wald Test on effect (slope) > 0, p-values shown 
in figure for each day and condition type.
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Extended Data Fig. 3 | Divergence-complexity effect at Family level. 
 A reproduction of divergence-complexity effect calculation in Fig. 2f except 
computing divergence at the Family level instead of at the ASV level (one-sided 
Wald Test on effect (slope) > 0, p-values shown in figure for each day and 
condition type). Unlike our results at the ASV level, the divergence-complexity 

effect for our mixed-metabolite conditions at the Family level was only 
significant for day 33. The lack of significance at other points may be related to 
their reduced sample size (for days 3, 6, and 9; see Extended Data Table 1), but 
may in principle reflect additional effects emerging upon taxonomic coarse 
graining.

http://www.nature.com/natecolevol


Nature Ecology & Evolution

Article https://doi.org/10.1038/s41559-024-02440-6

Extended Data Fig. 4 | Family composition over time. Each subplot shows 
the Family composition over time for a microcosm. Colors for each Family are 
defined by Phylum where blue represents Actinobacteria, yellow represents 
Bacteroidetes, green represents Firmicutes, and red represents Proteobacteria. 

Each column of subplots pertains to one source community and each row 
pertains to a condition (increasing in complexity from top to bottom, with single- 
and then mixed-metabolite conditions).
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a

b

Extended Data Fig. 5 | Microcosm replicates cluster. a, The final state at 
day 33 of two replicates for community HF1P and three replicates for all other 
communities (see Extended Data Table 1) projected separately for each condition 
using MDS. b, The distribution of distances across communities (N=1,066 
pairwise distances) and between replicates within the same community (N=142 
pairwise distances). Each violin outlines the kernel density estimate and contains 

a box which is bound by the interquartile range with an open circle at the media 
and whiskers that extend up to 1.5 times the interquartile range. Communities are 
colored by their source and squares represent the replicate used in the main text. 
Independent of condition, communities from the same replicate are more similar 
to each other than communities from separate replicates.
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a

b

Extended Data Fig. 6 | Divergence and diversity on a subset of communities 
which are available for all days. A reproduction of Fig. 3, but excluding all 
samples from communities HF1P and HF3H, which are missing data for days 
3, 6, and 9 (Extended Data Table 1). a, The slope of the relationship between 
community alpha diversity and divergence (black) and the mean community alpha 

diversity (red) over time. Shaded areas around each regression line represents the 
95% confidence interval. b, The data underlying the relationship in a over time. 
Each point is the diversity of a community in a condition (x-axis) and the mean 
divergence of that community from all others within a condition (y-axis).
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Extended Data Fig. 7 | Consumer resource parameterizations. D Matrices 
for trophic (a) and random (b) resource transformations. Each matrix column 
defines which resources are generated from a given input resource. a, Trophic 
resource transformations were parameterized by defining resource types (T0, T1, 
T2, and T3; red lines) which mostly transform into resources of the subsequent 
type with some self-renewal. b, Random resource transformations were 
parameterized by defining any resource to transform into any other resource 
with uniform probability. The colorbar indicates log10 resource transformation 
rate for a and b. C matrices for trophic (c) and random (d) consumer preferences. 
Each matrix row defines which resources can be utilized by each consumer. 

c, Trophic consumer preferences were parameterized by defining consumer 
families (F0, F1, F2, and G; blue lines) which consume a total of 35 resources of 
their associated type (for example, F0 consumers utilize T0 resources) and a 
common resource, T3. G consumers (generalists) consume resources of any type. 
d, Random consumer preferences were parameterized by defining consumers 
to utilize any resource with uniform probability. e, Seven initial environmental 
conditions were defined with 20 resources sampled from (1) T0, (2) T1, (3) T2, 
(4) T3, (5) T3+T2, (6) T3+T2+T1, and (7) T3+T2+T1+T0. f, Six source communities 
were defined by sampling 200 consumers.
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Extended Data Table 1 | Availability of each sample

Day Condition HF1P HF2P HF3H HF3E HF1M HF2M Total
0 1/1 1/1 1/1 1/1 1/1 1/1 6

3

Citrate 0/1 1/1 0/1 1/1 1/1 1/1 4
Glucose 0/1 1/1 0/1 1/1 1/1 1/1 4
Cellobiose 0/1 1/1 0/1 1/1 1/1 1/1 4
Cellulose 0/1 1/1 0/1 1/1 1/1 1/1 4
Lignin 0/1 1/1 0/1 1/1 1/1 1/1 4
C+G 0/1 1/1 0/1 1/1 1/1 1/1 4
C+G+C 0/1 1/1 0/1 1/1 1/1 1/1 4
C+G+C+C 0/1 1/1 0/1 1/1 1/1 1/1 4
C+G+C+C+L 0/1 1/1 0/1 1/1 1/1 1/1 4

6

Citrate 0/1 1/1 1/1 1/1 0/1 1/1 4
Glucose 0/1 1/1 1/1 1/1 1/1 1/1 5
Cellobiose 0/1 1/1 1/1 1/1 1/1 1/1 5
Cellulose 0/1 1/1 1/1 1/1 0/1 1/1 4
Lignin 0/1 1/1 1/1 1/1 1/1 1/1 5
C+G 0/1 1/1 1/1 1/1 1/1 1/1 5
C+G+C 0/1 1/1 1/1 1/1 1/1 1/1 5
C+G+C+C 0/1 1/1 1/1 1/1 1/1 1/1 5
C+G+C+C+L 0/1 1/1 1/1 1/1 1/1 1/1 5

9

Citrate 1/1 1/1 0/1 1/1 1/1 1/1 5
Glucose 1/1 1/1 0/1 1/1 1/1 1/1 5
Cellobiose 1/1 1/1 0/1 1/1 1/1 1/1 5
Cellulose 1/1 1/1 0/1 1/1 1/1 1/1 5
Lignin 1/1 1/1 0/1 1/1 1/1 1/1 5
C+G 1/1 1/1 0/1 1/1 1/1 1/1 5
C+G+C 1/1 1/1 0/1 1/1 1/1 1/1 5
C+G+C+C 1/1 1/1 0/1 1/1 1/1 1/1 5
C+G+C+C+L 1/1 1/1 0/1 1/1 1/1 1/1 5

12

Citrate 1/1 1/1 1/1 1/1 1/1 1/1 6
Glucose 1/1 1/1 1/1 1/1 1/1 1/1 6
Cellobiose 1/1 1/1 1/1 1/1 1/1 1/1 6
Cellulose 1/1 1/1 1/1 1/1 1/1 1/1 6
Lignin 1/1 1/1 1/1 1/1 1/1 1/1 6
C+G 1/1 1/1 1/1 1/1 1/1 1/1 6
C+G+C 1/1 1/1 1/1 1/1 1/1 1/1 6
C+G+C+C 1/1 1/1 1/1 1/1 1/1 1/1 6
C+G+C+C+L 1/1 1/1 1/1 1/1 1/1 1/1 6

33

Citrate 2/3 3/3 3/3 3/3 3/3 3/3 17
Glucose 2/3 3/3 3/3 3/3 3/3 3/3 17
Cellobiose 2/3 3/3 3/3 3/3 3/3 3/3 17
Cellulose 2/3 3/3 3/3 3/3 3/3 2/3 16
Lignin 2/3 3/3 3/3 3/3 3/3 3/3 17
C+G 2/3 3/3 3/3 3/3 3/3 3/3 17
C+G+C 2/3 3/3 3/3 3/3 3/3 3/3 17
C+G+C+C 2/3 3/3 3/3 3/3 3/3 3/3 17
C+G+C+C+L 2/3 3/3 3/3 3/3 3/3 3/3 17
Total 37 64 46 64 62 63 336

When available, one sample was sequenced from each microcosm for days 0, 3, 6, 9, and 12. Three samples were sequenced for day 33. Each column (HF1P, HF2P, HF3H, HF3E, HF1M, HF2M) 
corresponds to a source community. Bolded text indicates unsequenced conditions.
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Extended Data Table 2 | Consumer-resource model parameters

Parameter Description Value

i Consumer (species)

Ni Abundance of consumer i

Resource

R Amount of resource 

R 0 Resource supply concentration

D , Resource transformation matrix, indicating which resources  are 
transformed into   following the consumption.

ci, Consumer preference matrix, indicating which resources  are consumed by 
consumer i.

{0, 1}

l Leakage fraction, or the fraction of  that becomes , where the remainder 
becomes biomass.

0.8

m Maintenance cost 1

Number of resources 200 total (T0: 80, T1: 60, T2: 40, T3: 20)

Number of consumers 1000 total (F0: 500, F1: 300, F2: 100, G: 100)

Number of resource preferences per consumer 35

Number of communities 6

Initial number of consumers per community 200

Initial abundance of consumers 1

Number of conditions 7

Number of resources per condition 20

Initial abundance of resources 50

Description of each consumer-resource model parameter for all parameterizations. All quantities are unitless. See Extended Data Fig. 7 for a visual representation of these parameters.
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